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In their 1993 paper, W. Goh and J. Wimp derive interesting asymptotics for the
moments

1
c',,(at)zc,,:J~ " daft), n=0,12, ..,
0

of some singular distributions « {with support < [0, 1]), which contain oscillatory
terms. They suspect, that this is a general feature of singular distributions and that
this behavior provides a striking contrast with what happens for absolutely con-
tinuous distributions. In the present note, however, we give an example of an
absolutely continuous measure with asymptotics of moments containing oscitlatory
terms, and an example of a singular measure having very regular asymptotic
behavior of its moments.

Finally, we give a short proof of the fact that the drop-off rate of the moments
is exactly the local measure dimension about 1 (if it exists). i« 1995 Academic Press, Inc.

1. INTRODUCTION

Suppose we are given a measure g on the real line. It is uniquely
determined by the distribution

a(x)=p(( — o0, X)) for xeR.

This function is known to be non-decreasing and left continuous. The
support of « (or u) ts defined by

Suppde={xeR' :a(x +8)—a({x—3)>0V5>0}.

362

0021-9045/95 $12.00

Copyright & 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.



ON “ASYMPTOTICS FOR MOMENTS"’ 363

In this paper, we always will have Supp da = [0, 1] (and 1 € Supp da). Our
aim 1s to investigate the asymptotic behavior of the moments

1
c,,(oa)zc,,:f t" do(t), n=0,12, .., (1)
0

for some singular distributions a (ie, a'(x)=0 a.e. with respect to
Lebesgue measure). This behavior should be determined completely by the
local behavior of the distribution « around x=1. In [3] it is conjectured
that the drop-off rate of the moments 1s connected with the local measure
dimension of g at this point. The local measure dimension of g at x is
defined by

lim Inu(B,(x))
p—0 In P

where B ,(x) is the ball centered at x with radius p. In the present paper,
we are able to prove this hypothesis.

Obviously, the local properties of the measure at a single point do not
depend on singularity of the measure. Indeed, we are able to give

e an example of an absolutely continuous distribution with moments

1 In3 ki 1 2mmifin 2 2mmi 2mzifin 2
c,,~;{2(2—i—n—2>- Z ;,;7—[;(3 1)F<1 1n2>n }q

n = —x

« an example of a singular distribution with moments

1
c o=

_ O(n'4 e—2v").
" n+l+ (n"e )

In [3], the asymptotics of orthogonal polynomials with respect to singular
measures (especially of the coefficients in their three term recurrence rela-
tion) are investigated, too. This rather complicated problem is beyond the
scope of the present note. Some of our results, which confirm a conjecture
in [3] concerning convergence of arithmetic means of the recurrence
coeflicients, will be published elsewhere ([ 2, Theorem 1]).

2. SoMe HeLpruL LEMMAS

As in [3], we derive the asymptotics for the moments in our first
example from the asymptotics for their exponential generating function.
However, we do not use Mellin transform. The following two lemmas
would have simplified the proofs in [ 3] considerably.
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LemMma 1. Let
1
En(a)55n=f "'V da(t), neR',
[t}
then
- de7?
OSC,,—C,,éﬁ—C,,H,,;, for any 56(0’ l]

Proof. First, we have the elementary inequality
e=z1l+x forall xeR'
From this we get with x =1r—1
e’ 'zt forall reR'
and
te”'<e” forall reR’.
With x=1—1¢ we have
el T2 ¢
and
l—te' "<l —12—-0)=(1—1)? for 120
Consequently, for any de (0, 1]

en(l»])_ tn:en(r—l)[l _(tel —l)n] Sen(lflbn(l —t(’l 71)

4 3(1 — 2
<emr-l)n(1 —1)2:51’ 1!2—_
n

But
né(1 — 1) .
2

—nd(1 —1)/2 —1
na( M. <e !,

and since

t)ermi(lflj‘/Z _‘,z.(ud»(z-l).

(2)

(3)
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we obtain

-2

4e " 5
Ogenufl)__tng 5 6,ntl\r))(l~l)'
o°n

From this estimate (3) follows immediately by integration. |

Obviously, the sequence (&,) i1s closely related to the exponential
generating function of (c,): With

* i
S dy=flx)=Y ¢,~-= jo o™ da(1)

we have

For the simple type of self-similar distributions studied here, we obtain
explicit expressions for f(x) or In f(x) as (very special) infinite sums. Their
asymptotic behavior is given by

Lemma 2. Let Ge C'[0,1], a> 1. Then

S =3 [Gle= )= G(1)]

G(1)—-G(0)

In >
Ina nx

I

oo
! 2mmifl
C() + Z me mmifln a __

n= — G

+ Ole ™) for x— oo,

where
{ o TNY o —Yy —
0:‘“1‘{_( Gle ™) G(l)dx+J Gle™™) G(O)dx}
Inal o X \ X
G(1)—G(0)
T2 “
=ﬁ1_wfx Inxe "G'(e ™) cz’.x‘~{-————-G(1 )~ GO) (3)
lna 0 2
and
1

Cm =

_ J-j e VG (e ) x T Immiina gy Jor m#0. (6)
2mri Yy
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Proof. The trick here is to consider the auxiliary function

= 3 [Gle ")~ G(1)]

x G(1 G
+ 3 [Ge ) — oy + 29O

= Ina

By our assumptions, we have |G'(x)| <C, and from this immediately
follows that the series

i a*k e fu’k,\'Gl(efu*kx)
k=1

converges uniformly for |x| <x, < oo, and the series

T e Gle

converges uniformly for x > x4 > 0. Thus, S(x) is a C'-function in [x,, x,]
(for instance, in [ 1, a]), and we see easily

Staxy=S(x).

Hence, S(x) is a periodic C'-function of #=Inx with period Ina, and
therefore it’s the sum of the Fourier series {in complex form)

g(x) — Z Cm (" 2mmifin adu __ Z Cm 2minifin a

nr= - o ny= — o
with coeflicients

Ina

J‘ S(E’") — (2mrif/in a)u du_ J S ‘C) Y—(me/lnu)-l d\

Cn= Ina

Ina

In virtue of uniform convergence, we can evaluate the coefficients by
termwise integration. If m #0, we can omit the constant terms G(0) and
(1), since

a
f X —{2mnaifina)—1 dx — 0
1
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(remember a2/ ¢ = 11). Thus, we have

— I - “ By —(2muiflna) — 1
Cm_lnakzz,m j] G(e ") x dx
G(l)_G(O)J_a lnx Y*(Zmni,/lna)fl dx (7)
Inza 1 ’ )

But the substitution x — @ ~*x and partial integration give

o
gk _ i —
j G(é’ a,\)x (2mni/In a} ldx
1

ak+1

=j G(e—,t)'\,fthni/lna)fl dx
k

a

ln a . i ak+1
. . G(e .\) x ~2mmifina
2mni ak
lna ”k+l )
_ — XM, —X —2mnifln a
Cy— Lk e *G'(e ") x dx
1 s
= =5 [Gle™"") = Gle™)]
mi
Ina o ,
_ »—xGi —x '.-me‘,"ln 4 dx
2mrmi Lk ¢ (e ) x ax,
and the sum over this from k = — o0 to k = oc telescopes into
1 1 * y
— 2L [GO) = GN] —5m [ e G (e ) x I gx(8)
2mmi 2mni Yo

By partial integration again, we find

a
J ]n X X —(2mni/lna) -1 dx
1

In a , Ina In?a
= [h’l X x—me,:’ln a]clz + .
2mmni

2mmi

o
j X —{(2mnrilna)—1 d,\' R "
1 2mni

together with (8) from (7) follows (6). The case m =0 is similiar: First we
have

[RGBl =6,
1

X a= % X

640°82:3-4
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and consequently

LopeGle M =G Gle )= G()
e

0 X

dx.

k=1 X

Analogously, the second sum evaluates as

x ca Gle ") — G(0) = G(e ) — G(0)
Z jl _— d,\‘ = Jl —_— d\

X X

k=0

Since
« Y
f Inx x 'dx=4In?q,
1

we get (4). Integrating by parts, from (4) follows (5). Now the proposition
follows immediately from

_ G(1)~G(0)

] -.
Ina n

Smﬁ=mxy-2[6w*ﬁw~0wn
k=0

and the obvious estimate

}j [G(evuk"')—G(O)]IS Z Ce ™ =0(e ™). 1
k=0 k—0

Our last goal is to connect the asymptotics for the moments of (s} with
its local behavior about r=1. To do this, we need

LemMMA 3. For n >0, we have
1 1
g=f daty=n| ~'[a(l)~a(] dr (9)
0 0

Proof. This is just the usual formula of partial integration, which is
valid in the case of a Stieltjes integral, too (since the integrand " is a
monotone and continuous function):

1 1
ftﬂhhﬁ:—Jt"ﬂﬁU)—Mn]

0

=[ —t"[oc(l)—cx(t)]](‘)+nr "o 1) +a(2)] de

=nfﬂ”mm—ﬂmm.|
4]
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3. THE RESULTS
Now we are able to formulate our results. Thus, we show that

asymptotics for moments of absolutely continuous distributions may have
oscillating terms. We define «(¢) by

2t for 1€[0,1],
alt) =<1 for rel3, 4], (10)
T+ 3a(2e—1)  for tel}, 1]

It’s easy to see that a'(¢) exists almost everywhere, in fact we have a’(1) =2
forte(1—2"%1-3.2"%"2) k=0,1,2, .., and «'(¢) =0 elsewhere. From
this we obtain the “explicit” formula

1 2 o 3 n+ 1 1 n+1
cnf ran=25 1 [(1-5m) ~(-5) |

This looks rather innocent, but there are oscillatory terms!

THEOREM 1. Let a{t) be defined by (10). Then we have

1 In3 X, 1 . 2mri .
~— I T o 32mmfln 2 I _ 2mzifin 2 ]
Cn n{2<2 ln2> . ZT mm'( D <1 1n2>n }

Proof. From the definition (10) we derive the functional equation

| 1/4 l I
flx)= JO o do(1) =2 fn e di+ jl edn(2t—1)

¥ ]

X

1 1 (x
=2 . + 5 e f <§>

Multiplying this by xe ™, we get

=2

1.t .
L[ e gy
0

xe flx)=2e M —e M) + % e f <E>

and iterating this equation
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2)'

Now we apply to the sum our Lemma 2 with a=2 and G(x)=2(x*"
In this simple case we have G(0)=G(1)=0 and e *G'(e
2(3e~* —2¢77), and by (6) (after some algebra)

—X
,'\»)

1

9 .
C = __._(32m7u/1n2_ l)[w (l ~_.J'nTCl

In2

‘m . ) for m 75 0
mmni

The coefficient C, can be calculated by (4), and we obtain (since the
Frullani integral

o (M2x _ -2
* e —e
[reiteeny,

o X

is known to be In§=21n2 —In 3)

In3
=2(2——=).
Co (2 ln2>

This means

& =flm)ye "

1 In3 & | 2mmni y
- it S o (22mmifln2 Wr . 2mnifln 2
n{z <2 ln2> ;Zix rmri(3 ) <‘ ln2>n }

1
+0<—er">.
n

But (3) shows ¢, — ¢, = O(1/n?), and this proves our theorem. |

After we have shown that there are absolutely continuous distributions
with strange asymptotics for the moments, we add an example of a singular
distribution with very regular asymptotics for its moments. The idea is to
use (9) to enclose a singular distribution between two very near and
regular distributions with known moments. Indeed, if we have three dis-
tributions ay(#), a,(f) and a(t) with ay(?) <a«(z) <a,(¢) and x4(l)=a(l) =
o; (1), from (9) immediately follows ¢, (a,) < c,(«) < ¢, (). This simple fact
together with Fig. 1 shows the construction clearly. The details are given by

THEOREM 2. Let (t,) be defined by t,=0, t,=1e ' and
o=t +e "D for n>=0Q,
and B(t) any singular distribution with B(1)=1. We define a(t) as

r—1,
~——'~> for telt,, t,,.,1,n=0.

rn+l-tn

a(t):tn-fl+{tn+2_tn+l)18<
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/ aolt) =1t

FIGURE 1

Then

_ 1 14 ,—2./n
c,,(a)—n+1+0(n e ).

Proof. FromO=1t,<t,=1e '<t,=¢"! wehave byinductions, <1, ,
forall n=0. Let ap(t) =t and o,(t) =t +e' "V Forte(1,,1,,,] we have
by definition

tn+] Sa(f)ét,,+2,
and by monotony

() Sop(t, )=ty Sx(B)<t,, ,=0,(1,) <)1)

Consequently, lim,,_, ., t,=1, and a(¢) is well-defined for any 1€ [0, 1). Of
course, we set

a(ly= lim «ft,)= lim ¢t,,,=1.

n— n—

Thus, we have ay(t) <a(t) <a,(t) and x5(1) =a(l)=0a,(1), and from this
follows

o) e fa) <e (o)
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and

1

0 < ('n(ao) - C"(!X) < ('n(a()) - Cn(al } = J tn

Lite—1}
se dt.
0 (1—1)~

But we can estimate

t
Jlt" 1 ,(’”“’”dtéf 1 .,e"(’—”J“l"""”dt,
Y (l_t)- /,(l—t)‘-

and the last integral with the substitution =1 —(l/ﬁ)e"‘ transforms
into

o
_2 08
\/’;J ele 2 n cosh dll
g

o
z\/l;J (Coshu+sinh Ll) ()’2 ncushudu
—
e
:\/;j cosh u(,fZ \/'_IL‘OSh Y du
~ o

=2 ﬁ f: cosh ue ~2V"eoshu gy =2 /nK (2 \/I;)

(see [1,9.6.24]). The asymptotics of the modified Bessel functions K, are
well-known: From [1,9.7.27 with v=1 and =2 ./n we get

2/nK\(2 /)~ Jan' e 2V

and this proves the result. |

Now we connect the drop-oft rate of moments with the local measure
dimension around 1:

THEOREM 3.  Let u be the measure defined by the distribution « and B ,(x)
the ball centered at x with radius p. We assume that

jim BABAD)_
p—0 1np

exists. Then

. Ineg,
Iim

nox NN

= —. (1)
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Proof. In our situation, B, (x)=[x—p,x+p] and (recall Supp dxc
(0,11

B (1)) =a(l) —afl —p).
Let ¢ > 0. By our assumption,

@ —a)
PTES Tha—y  STFE

or
(- ga(ly—a(t) (1 =1y ¢ (12)

for t > 1 —¢. From (9) follows
1
c,,zf " a(l)y—afr)] dt
0
1
=f nt" = [a(1) —a(1)] dt + O((1 — 8)™),
1-6
and for any >0 we have
i
f nt" "Y1 —n)fdt
1-0

1
=j a1 =) de + O((1 — )"
0

r{f+1)rn)

=n Tt f+ D) + 01 —08)")

rpg+nHrin+l) .
= 1L O((1 — 6)").
In+p+1) W ")

Together with (12) this gives

Iy+e+1)yIn+1)
In+y+e+1)

+0((1—-0)")

I'y—e+ 1) in+1)
¢, L£€——
" I'in+y—e+1)

+ O((1 ~3d)").
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Observing

I'n+1)

7 onF
rn+p+n "

as n— oo (see [1,6.1.46]), we immediately obtain

.. In¢, .
—y—e¢<lim inf ——" < lim sup
n—wo INA ”— o0 1

Inec,
nn
Since ¢ >0 was arbitrary, we are done. J
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