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In their 1993 paper, W, Goh and J. Wimp derive interesting asymptotics for the
moments

c,,(<X1 =C n = fIn d<X(I),
o

n=O, 1,2, ,.. ,

of some singular distributions <X (with support c [0, 1]), which contain oscillatory
terms. They suspect, that this is a general feature of singular distributions and that
this behavior provides a striking contrast with what happens for absolutely con­
tinuous distributions, In the present note, however, we give an example of an
absolutely continuous measure with asymptotics of moments containing oscillatory
terms, and an example of a singular measure having very regular asymptotic
behavior of its moments.

Finally, we give a short proof of the fact that the drop-otT rate of the moments
is exactly the local measure dimension about 1 (if it exists). i(') 1995 Academic Press, Inc.

I, INTRODUCTION

Suppose we are given a measure I' on the real line. It IS uniquely
determined by the distribution

oc(x) =1'«( - 00, x)) for XE R',

This function is known to be non-decreasing and left continuous, The
support of oc (or 1') is defined by

Supp doc = {x E R': oc(x +0) -oc(x -0) >0 \1'0 >O},
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In this paper, we always will have Supp da c [0,1] (and 1 E Supp da). Our
aim is to investigate the asymptotic behavior of the moments

Cn(a) == Cn =rtil da(t),
o

n=O, 1,2, ... , (1)

for some singular distributions a (i.e., a'(x) = 0 a.e. with respect to
Lebesgue measure). This behavior should be determined completely by the
local behavior of the distribution a around x = I. In [3] it is conjectured
that the drop-ofT rate of the moments is connected with the local measure
dimension of f.l at this point. The local measure dimension of f.l at x is
defined by

1
. Inp(Bp(x))
1m ,

1'-0 In p

where B) x) is the ball centered at x with radius p. In the present paper,
we are able to prove this hypothesis.

Obviously, the local properties of the measure at a single point do not
depend on singularity of the measure. Indeed, we are able to give

• an example of an absolutely continuous distribution with moments

C
n

_ ~ {2 (2 _In 3) _ I' _1_. (ynmi,1n 2 _ 1) r (1 _2mni) n2ml1i/ln 2},

n In 2 m ~ _ .Y. mm In 2

• an example of a singular distribution with moments

C
n
=_1_

1
+O(nl/4e-2~).

n+

In [3], the asymptotics of orthogonal polynomials with respect to singular
measures (especially of the coefficients in their three term recurrence rela­
tion) are investigated, too. This rather complicated problem is beyond the
scope of the present note. Some of our results, which confirm a conjecture
in [3] concerning convergence of arithmetic means of the recurrence
coefficients, will be published elsewhere ([ 2, Theorem 1]).

2. SOME HELPFUL LEMMAS

As in [3], we derive the asymptotics for the moments in our first
example from the asymptotics for their exponential generating function.
However, we do not use Mellin transform. The following two lemmas
would have simplified the proofs in [3] considerably.
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LEMMA 1. Let

then
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1

C,,( oc) -= C" = f e"I'- I ) doc( t),
o

nE R ' , (2)

for any J E (0, I ]. (3)

Proof First, we have the elementary inequality

for all XE R ' .

From this we get with x = t - I

for all t E R 1

and

With x = I - t we have

el-f~2-t

and

I-tel-'~ l-t(2-t)=(1-t)2

Consequently, for any J E (0, 1]

for t ~O.

e"lt - l ) _ t" = e"lf-I,[ I - (tel-f)"] ~ e"(t-ll n( I - tel-f)

,,:::. e"ll - I )n( I - t f = -±- [nJ(1 - t) e - II,}( I - r)/2 J2 e"l I -,})( f- I )
- . J~ 2 ..

But

no( 1 - t) -II,}(I _ 1)/2 _ I
2 e ~e ,

and since

e" lt -- II ~ til,



we obtain
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From this estimate (3) follows immediately by integration. I
Obviously, the sequence (c,,) is closely related to the exponential

generating function of (e,,): With

X X" II
f(x, da) =f(x) = L c1l1= e'X da(t)

,,~O n. 0

we have

For the simple type of self-similar distributions studied here, we obtain
explicit expressions for fix) or Inf(x) as (very special) infinite sums. Their
asymptotic behavior is given by

LEMMA 2. Let GECI[O, I], a> l. Then

Y.

Six) = I [G(e- a -
k
,) - G( I)]

k~1

oc G( 1) - G(O)
= C + "'" C .2m,,;/ln a _ Io L.., m X n X

m~ -'x In a

for x ..... C1J,

where

__I lf I G( e - X) - G(l ) . fcr. G( e - X) - G( 0 ) J
~-I ~+ ~na 0 x I X

G(I)-G(O)
+ 2

I f Y . . . G(l ) - G(°)=- In x e -'G'(e -, ) dx +---'------'-
Ina () 2

and

(4)

(5)

I f Y. •C
m

= ---. e- '\G'(e-'\) x- 2m1rl!lna dx
2mm 0

for m ,#0. (6)
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Proof The trick here is to consider the auxiliary function

'h

5'(x) = L: [G(e-ak')-G(l)]
k=l

X
o G(l) - G(O)

+ L [G(e-u")-G(O)] + I Inx.
k~O n a

By our assumptions, we have IG'(x)l:::; C, and from this immediately
follows that the series

'X_,

L a- k e- a " k'G'(e- U -
k
,)

k~1

converges uniformly for Ixl < x I < w, and the series

f t/ e -ak'G'(e- ak,)
k~O

converges uniformly for x>xo>O. Thus, 5'(x) is a CI-function in [xo, Xl]
(for instance, in [I, a]), and we see easily

S(ax) = 5'(x).

Hence, 5'(x) is a periodic C1-function of u = In X with period In a, and
therefore it's the sum of the Fourier series (in complex form)

'x'

S(x)== L C
m

e(2mni/lna)u== L C",x 2nm(/lna

"- cr..

with coefficients

I fIn a I faCm=- 5'(e") e-(2mni/ln a lu du =- 5'(x) x-I2ul1li/lna)-1 dx.
In a 0 In a 1

In virtue of uniform convergence, we can evaluate the coefficients by
termwise integration. If 111 # 0, we can omit the constant terms G( 0) and
G( 1), since

fax-\2mni/lnll)-1 dx=O
I
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(remember a -2mn;/ln U = l!). Thus, we have

+ G( I) - G(O) fU I -(2mni,~na)-1 d
? nx x x.

In- a I

But the substitution x ~ a - kX and partial integration give

fU G( e _Uk,) X -(2mni/ln a) - I d.r:
1

a k + 1

=f G(e- x )X-(2mn;/lna)-1 dx

a k

[
I

J
ak + 1

n a "?,= ---. G(e~"') x-_mmilna
2mm ak

I k + 1

n a fa -XG'( -X) -2mni/lna d--- e e x X
2mni a k

In a a
k + 1

..,---. f e--XG'(e- X) x-2mnl/ln U dx,
2n177:1 uk

and the sum over this from k = - 00 to k = oc telescopes into

In a In a fa. .
---. [G(O) -G(1)] ---. e-xG'(e-'") x-2mm/lnu dx.

2mm 2mm 0

By partial integration again, we find

f
a

In x X -(2nmijln aj - I dx

I

367

(7)

(8)

In a . In a Ia , In 2 a= - 2mni [In x X -2m1tl/1n a] r+ 2mni 1 :r -(2m1tliln u) - I dx = - 2nmi'

together with (8) from (7) follows (6). The case m =0 is similiar: First we
have

f
u G(e-a-kx) - G(1) fa-k+ 1 G(e- X) - G( I)
------- dx = dx

I X a- k X

MO'R2"1-4
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and consequently

x~ fa G(e- a-
k
,) - G(1) . _ JI G(e-') - G(l)L d.x - dx.

k~1 I X 0 X

Analogously, the second sum evaluates as

Since

f
a

In X x I dx = ! In2 a,
I

we get (4). Integrating by parts, from (4) follows (5). Now the proposition
follows immediately from

- ~ k G(1) - G(O)
S(x) = S(x) - f.., [G(e- a ,) - G(O)] - In x

k ~O In a

and the obvious estimate

I
f [G(e-ak')-G(O)]I::;; f Ce-ak'=O(e-'). I

k=O k~O

Our last goal is to connect the asymptotics for the moments of a(t) with
its local behavior about r= I. To do this, we need

LEMMA 3. For n > 0, Ive have

I I

en = fa rndrx(t) = n fa rn- I [ rx(l ) - a(t)] dr. (9)

Proof This is just the usual formula of partial integration, which is
valid in the case of a Stieltjes integral, too (since the integrand tn is a
monotone and continuous function):

= [ - tn[ rx(l ) - rx(t)] n+n ( rn- I [a(l ) + rx(t)] dt

=nrtn-I[a(l)-a(t)] dt. I
o
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3. THE RESULTS

369

Now we are able to formulate our results. Thus, we show that
asymptotics for moments of absolutely continuous distributions may have
oscillating terms. We define (X(t) by

{

2t

(X( t) = ~

1+ ~(X(2t - I)

for t E [0, n
for tE U, D,
for tEn, I].

(10)

It's easy to see that (X'(t) exists almost everywhere, in fact we have (X'(t) = 2
for t E (1 - 2-\ 1-3·2 -k- 2), k = 0, 1,2, ... , and oc'(t) = °elsewhere. From
this we obtain the "explicit" formula

I 2 'x. l( 3 ),,+1 ( I ),,+I
J

c = r t" doc(t) =--"" 1--- - 1--
" ]. n + I L.. 2k + 2 2k 'o k=O

This looks rather innocent, but there are oscillatory terms!

THEOREM 1. Let oc(t) be defined hy (10). Then we have

e" _ ~ {2 (2 _In 3) _ i' _1_. (32"'''i,~n 2 -I) r (1 _2nmi) fl2m"i/ln 2}.
n In 2 . mm In 2

nl=- ,x

Proof From the definition (10) we derive the functional equation

.1 1/4 1 I

f(·") = j e'Xdoc(t) =2 f e'Xdt+- f e,xda.(2t-l)
o 0 2 1/2

ex
/
4-1 1 fl .=2 +- e l (t+I)i 2 )Xdoc(t)
x 2 0

_ 2 e
x

/
4- I I \'I2f (X)- +-e- -.
x 2 2

Multiplying this by xe-" we get

xe -'fix) = 2(e <h/4 - e -') +ge -xil/ (g)
and iterating this equation

xe - x I( x) = 2 I (e - 3 2

k ~ 1

k-I X _

-e
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for m #0.

Now we apply to the sum our Lemma 2 with a = 2 and G(x) = 2(X 3
/
2

- x 2
).

In this simple case we have G(O)=G(1)=O and e-xG'(e- X)=
2(~e-(3/2)x_2e-2X),and by (6) (after some algebra)

C
m

= __1_. (32,m"/ln 2 _ I) r (1 _ 2mni)
nlnl In 2

The coefficient Co can be calculated by (4), and we obtain (since the
Frullani integral

f' _e_-_O_/2_lx e_-_2X dx

o x

is known to be In 1= 2 In 2 -In 3)

(
In 3)Co =2 2- ln 2 .

This means

en = f(n) e n

=~ {2 (2 _In 3) _ I' _1_. (3 2n""i1n 2_ 1) r (1 _2mni) n2m1ti/ln 2}
n In 2 III = _ eYe, mm In 2

+ oGe-n
).

But (3) shows en - Cn = o( 1/n 2
), and this proves our theorem. I

After we have shown that there are absolutely continuous distributions
with strange asymptotics for the moments, we add an example of a singular
distribution with very regular asymptotics for its moments. The idea is to
use (9) to enclose a singular distribution between two very near and
regular distributions with known moments. Indeed, if we have three dis­
tributions oco(t), oc1(t) and oc(t) with oco(t) ~ oc(t) ~ oc1(t) and oco(1) = oc( I) =
OC I(l), from (9) immediately follows cn(oc.l ~ cn(oc) ~ cn(oco). This simple fact
together with Fig. 1 shows the construction clearly. The details are given by

THEOREM 2. Let (t,J be defined by to = 0, t I = !e- I and

t
n

+
2

= t
n
+ eI/Un-l) for n :;::'0,

and P(t) any singular distribution with P(1) = 1. We define oc(t) as

for t E [t,,, tn + 1], n :;::, O.
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FIGURE 1
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Proof From 0 = to ~ t 1 = ! e -] ~ t 2 = e -I we have by induction t n ~ t n + 1

for all n ~ O. Let oco(t) = t and OCI( t) = t + e1/(t - 1I. For t E [tn, tn+ 1] we have
by definition

and by monotony

Consequently, limn _ 00 tn = 1, and oc( t) is well-defined for any t E [0, 1). Of
course, we set

oc( 1) = lim (X(t n) = lim t n+ 2 = 1.
n_,:i) II-X

Thus, we have oco(t) ~ (X(t) ~ oc I( t) and oco(l) = oc(1 ) = oc 1(1), and from this
follows
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and
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I
I I

O::::;;C,,(OCo)-C,,(OC)::::;;C,,(OCo)-c,,(atl= t" I ,elilt-Ildt.
o (- 1)-

But we can estimate

and the last integral with the substitution t = I - (I/-fi) e-" transforms
into

~ f'Ch e" e - 2 fi cosh II du
-,x_,

=~ fY (cosh u + sinh u) e - 2 fi cosh" du
- 'y~

= ~ f Y

' cosh ue -2 fi cosh II du
- ex,'

= 2~ fCY cosh ue',,2 ...;';cosh II du = 2 ~KI(2~)
o

(see [1,9.6.24]). The asymptotics of the modified Bessel functions K" are
well-known: From [1,9.7.2] with v = I and:: = 2 fi we get

2 -fiK I (2 -fi)- fin li4 e -2 fi,

and this proves the result. I

Now we connect the drop-off rate of moments with the local measure
dimension around I:

THEOREM 3. Let It be the measure defined by the distribution -IX and Bp(x)
the ball centered at x with radius p. We assume that

I
. Inp(Bp(I))
1m =Y

p ~O In p

exists. Then

In c"
lim -=-y

11-~ Z. In 11 .
(II)
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Proof In our situation, B)x) = [x - p, x + p] and (recall Supp drx c

[0, I]!)

,u(Bp (1)) = rx( 1) - rx( 1 - pl.

Let e > O. By our assumption,

In( rx( I ) - rx( t) )
y-e~ ~y+e

In( 1 - t)

or

for t> 1 - o. From (9) follows

C,,= (nt"-I[rx(i)-rx(t)]dt

={I nt"-I[rx(i)-rx(t)]dt+0((1-0)"),
1-6

and for any P> 0 we have

( _ 6 nt" - I ( 1 - t)11 cit

= ( nt,,-l( 1- t)11 dt + 0(( 1-0)")

=n T(P+ 1) T(n) + 0((1-6)")
T(n+p+I)

_ T(P + 1) T(n + 1) 0 "
- T(n +P+ I) + O( (1 - )).

Together with (12) this gives

T(y+e+I)T(n+l)---'-.:.------ + 0((1 - 0)")
T(n+r+ e + l )

T(}' -I: + 1) T(n + 1) "'
~c,,~ .....~.--+ O((I-v)").

F(n+y-I:+I)

(12)
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Observing
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_r_(n_+_I_)_ ~ n-P
T(n+p+I)

as n -> 00 (see [1,6.1.46]), we immediately obtain

. . In Cn . In C n
-y-e~hm mf-I-~hm sup -I-~ -y +e.

n-Cf) nn n_oo nn

Since e > 0 was arbitrary, we are done. I
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